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Abstract: We exposit the eigenvalue distribution of the lattice Dirac operator in Quan-

tum Chromodynamics with two colors (i.e. two-color QCD). We explicitly calculate all the

eigenvalues in the presence of finite quark chemical potential µ for a given gauge configu-

ration on the finite-volume lattice. First, we elaborate the Banks-Casher relations in the

complex plane extended for the diquark condensate as well as the chiral condensate to

relate the eigenvalue spectral density to the physical observable. Next, we evaluate the

condensates and clarify the characteristic spectral change corresponding to the phase tran-

sition. Assuming the strong coupling limit, we exhibit the numerical results for a random

gauge configuration in two-color QCD implemented by the staggered fermion formalism

and confirm that our results agree well with the known estimate quantitatively. We then

exploit our method in the case of the Wilson fermion formalism with two flavors. Also we

elucidate the possibility of the Aoki (parity-flavor broken) phase and conclude from the

point of view of the spectral density that the artificial pion condensation is not induced by

the density in strong-coupling two-color QCD.
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1. Introduction

Quantum Chromodynamics with two colors (two-color QCD) instead of three is a sophis-

ticated practice ground for theorists to extract worthwhile information out of dense quark

matter. We immediately hit on several reasons why we can believe so: First of all, nu-

merous works on dense two-color QCD have almost established a firm understanding on

the ground state of two-color QCD by the analytical approach as well as the Monte-Carlo

simulation [1 – 31]. Second, the notorious sign problem of the Dirac determinant at µ 6= 0

(where µ is the quark chemical potential) is not so harmful as genuine QCD, which makes

it viable to perform the Monte-Carlo integration [1, 11, 25, 32]. Third, dense two-color

matter realizes a bosonic baryon system leading to the Bose-Einstein condensation of the

color-singlet diquark [6, 7]. This two-color superfluid phase is reminiscent of the three-color

superconducting phase [33], for they both break the UB(1) symmetry. Finally, enlarged

flavor symmetry earned by the pseudo-real nature of the SU(2) group that is called Pauli-

Gürsey symmetry [35, 34] constrains two-color QCD at mq = µ = 0. The interplay between

the chiral and diquark sectors simplifies owing to the symmetry, which enables us to con-

struct an effective model for two-color QCD with less ambiguity [21, 25].

This paper aims to illustrate the spectral behavior in a rather brute-forth manner.

We usually define the order parameter and concern its expectation value to examine the

phase structure with varying the external parameters such as the temperature T , the quark

chemical potential µ, the quark mass mq, and so on. We shall explore our another trail

here leading to the phase distinction. In this work we will carefully look into the eigenvalue
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distribution of the Dirac operator and characterize the state of matter by the distribution

pattern. Actually, we can find the scatter plot for the Dirac eigenvalues in two-color QCD

in refs. [4, 11] and we will do that in a more systematic way. It is long known that the

eigenvalue spectrum is informative in the vacuum [36] and the random matrix theory is

capable of determining the low-lying spectrum, which has recently been extended to the

finite density study [29, 31, 37]. Interestingly, the comparison to the random matrix model

exhibits good agreement also in the case of the overlap fermion at µ 6= 0 [38].

It is not only the low-lying spectrum but also the whole spectral density that we will

deal with in the present paper. The Monte-Carlo simulation generates a set of gauge

field configurations each of which has a substantial weight on the partition function. One

configuration corresponds to one value for a certain operator (the order parameter for

example of our interest), and the more configurations we accumulate, the more accurately

we can improve the expectation value of the order parameter. Here, we would remind that

the well-known Banks-Casher relation [39] yields the chiral condensate given in terms of

the eigenvalue spectral density at the origin (i.e. mq → 0). It follows in turn that the

order parameter makes use of only tiny amount of the entire information available from

the spectrum. In this work, hence, we will unveil detailed information in a special case of

dense and cold (T = 0) quark matter with two colors.

One might come across a question then; what is the benefit from the whole shape of

the eigenvalue distribution? To answer this, we should be aware that the Dirac eigenvalues

originally lie on the imaginary axis except for the displacement in the real direction by

mq but they scatter over the complex plane because of non-zero chemical potential µ 6= 0

or Wilson coefficient r 6= 0. This feature has, more or less, something to do with the

sign problem meaning that the Dirac determinant could take a negative value. For µ 6= 0

the Dirac operator mixes the Hermitean and anti-Hermitean operators up resulting in a

complex eigenvalue. The situation at finite µ looks similar to that in the presence of the

Wilson term in view of the eigenvalues particularly in the two-color case [32]. [We implicitly

assume only the two-color case below.] The sign problem may arise actually when the

eigenvalue distribution protrudes from the positive quadrant into the negative quadrant.

This observation implies that a large mq (center location of the eigenvalue distribution) as

compared to the chemical potential or the Wilson term (distribution width) would put the

sign problem away. In the physics language, the vacuum stays empty as long as mq > µ,

and so there is no µ dependence then, which brings about no sign problem naturally. The

onset of the density effect is manifestly visible from the whole eigenvalue distribution.

Besides, since mq 6= 0 shifts the distribution, it is transparent to take account of the mass

effect provided that the eigenvalue distribution is given. These motivate us to turn to the

entire Dirac spectrum. In the future, hopefully, we believe that the eigenvalue distribution

should shed light upon the sign problem at a deeper level. In fact, as we will recognize

later, a large value of µ induces a peculiar structure in the eigenvalue pattern.

The above mentioned may well be somewhat abstract. Let us then make the issue to

be discussed more specific. What puzzles us is that there seems to be no clear distinction

between the onset criterion for the superfluid phase and the Aoki phase if considered based

on the eigenvalue distribution alone. They can possibly coexist but it would be a weird
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situation because the superfluid phase is a physical ground state but the Aoki phase is a

lattice artifact inherent in the Wilson fermion formalism [40, 41]. The final part of this

paper will be devoted to resolving this matter. There, we will find that the onset criterion

is certainly degenerate when µ = 0, but the Aoki phase is taken over by the superfluid

state in the proper limit of µ → 0. In short, we conclude that the Aoki phase never

emerges by the density effect in strong-coupling two-color QCD This statement does not

conflict the preceding strong coupling analysis [40, 41] because the Aoki phase solution at

strong coupling is a saddle-point and infinite Nc is required for stability, though this fact

is sometimes overlooked.

2. Two-color QCD at strong coupling

In the limit of the strong coupling the gauge action does not enter the dynamics and the

partition function is simply given by the fermionic part;

Z =
〈

(detD)Nf

〉

U
≡

∫

∏

n,µ

dUµ(n)
(

detD
)Nf . (2.1)

Here D is the Dirac operator. Although the strong coupling limit is a drastic approxi-

mation which neglects the gauge dynamics completely, it is amazing that only the Dirac

determinant with random gluon fields can grasp rich contents of quark matter not only in

the two-color case [2, 5, 20] but also in the general case [3, 40 – 49].

In a box with volume V = L4, the operator D is a (4NcV ) × (4NcV ) matrix. We

denote the eigenvalue of D by λi, that is,

Dvi = λivi , (2.2)

where i runs from 1 to 4NcV . Then the Dirac determinant is given by the product of all

the eigenvalues. It is easy to prove that detD in the SU(2) gauge theory takes a real value

even at finite density where D loses the γ5-Hermiticity, i.e. γ5D(µ)γ5 = D†(−µ) 6= D†(µ).

The standard argument immediately follows;

detD(µ) = det
[

(Cσ2γ5)
−1D(µ)(Cσ2γ5)

]

= detD∗(µ) =
[

detD(µ)
]∗
. (2.3)

Here, to derive the above, the necessary relations we use are γ5γµγ5 = −γµ, CγµC
−1 =

−γT
µ , and σ2Uσ2 = U∗ where the last relation corresponds to the pseudo-real nature of the

SU(2) group.

From this argument we see that detD(µ) is real but not necessarily positive. The

simulation thus entails an even number of Nf so that (detD)Nf is positive definite. This

is the main reason why the exotic phase structure proposed in refs. [12, 25] in two-color

QCD with quark and isospin chemical potentials has been far from confirmed. The two-

color determinant, however, buries a nice property of respective eigenvalues under the

product. We can prove that, if λi = mq + iλ′i is an eigenvalue of the Dirac determinant

in two-color QCD, there appear mq − iλ′i, mq + iλ′∗i , and mq − iλ′∗i simultaneously in the

eigenvalue spectrum [11, 25, 32]. The proof may break down when iλ′i is a real number;
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the eigenvectors for mq +iλ′i and mq − iλ′∗i could not be independent. According to ref. [11]

the staggered fermion is safe from such a possibility but the Wilson fermion has only a

pair of mq + iλ′i and mq − iλ′i instead of a complex quartet in that case of real iλ′i. We will

explicitly verify that this is the case. Then the single-flavor Wilson fermion suffers the sign

problem once either of real mq + iλ′i and mq − iλ′i is negative.

Here we shall briefly summarize the known facts in two-color QCD at strong coupling.

Let us begin with the chiral limit. It has been discovered first in ref. [2] that the chiral

condensate is zero, while the diquark condensate has a finite expectation value, in the

limit of µ → 0 with mq = 0 taken first. In the presence of mq 6= 0 the system is kept

intact as long as µ is sufficiently small and, in turn, the chiral condensate becomes non-

zero but the diquark condensate vanishes. As soon as µ exceeds the mass of the lightest

excitation (usually bosonic baryon), the density effect is activated leading to decreasing

chiral condensate and increasing diquark condensate as µ goes larger. We remark that

this behavior of dense two-color QCD has been settled in the staggered fermion but the

relation between the chiral and diquark condensates is not quite convincing yet in the

Wilson fermion because the Wilson term breaks chiral symmetry explicitly.

3. Banks-Casher relations

Here we will make a quick view over the link between the eigenvalue spectral density and

the chiral, diquark, and parity-flavor breaking condensates for later usage. In this section

the argument holds regardless of strong coupling or not.

3.1 Chiral condensate

It is widely known that the chiral condensate has a close connection to the Dirac eigenvalue

distribution via the Banks-Casher relation [39]. To advance our discussions in a self-

contained manner we shall take a brief look at the derivation of the Banks-Casher relation.

In the explicit presence of the source for the chiral condensate (i.e. mass term), the Dirac

operator could be decomposed into the form of D[m] = mq1 + D[0] whose eigenvalue is

denoted as λi = mq + iλ′i as we did in the previous section. The chiral condensate per

flavor is given by the derivative of Z with respect to mq, which leads us to

1

Nf

〈ψ̄ψ〉 = −
1

NfV

∂

∂m
lnZ = −

1

V

〈

∑

i

1

λi

∏

j

λj

〉

U
·
〈

∏

j

λj

〉−1

U
≡

≡ −
1

V

〈〈

∑

i

1

λi

〉〉

=

〈〈
∮

dλ

2πi

πρχ(λ)

λ

〉〉

,

(3.1)

where ρχ(λ) is the eigenvalue spectral density which is to be expressed in the complex

plane as

ρχ(λ) ≡
1

πV

∑

i

1

λi − λ
, (3.2)

which is, strictly speaking, the resolvent [37] rather than the spectral density. To keep the

analogy to the conventional Banks-Casher relation, however, we shall refer to the above
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as the spectral density. The integration contour should go around all of the poles at λi to

pick all the eigenvalues up. In our notation 〈· · · 〉U means the ensemble average over gauge

configurations and 〈〈· · · 〉〉 represents the average including the Dirac determinant.

Here we consider the contour which is an infinitely large circle in the complex plane

surrounding all the poles. Then the contour integral must amount to zero because ρχ(λ)/λ

goes to zero faster than |λ|−1. That means that we can evaluate the above integral by the

negative residue of the pole at λ = 0. After all, we have

〈ψ̄ψ〉 = −Nf π
〈〈

ρχ(0)
〉〉

. (3.3)

For consistency check let us consider a bit more about this formula. Usually the Banks-

Casher relation is given in the limit ofmq → 0. In this limit, using the notation λi = mq+iλ′i
where λ′i is a real number in the continuum theory, we can rewrite eq. (3.2) into a form of

ρχ(0) = lim
mq→0

1

πV

∑

i

1

mq + iλ′i
=

1

V

∑

i

δ(λ′i) , (3.4)

which is more familiar in literatures. We note that eq. (3.2) is in fact an analytic continued

form of the expression (3.4) with the delta function, and it is equivalent to the definition of

the resolvent used in the context of the random matrix theory [29]. This complex extension

is necessary for our purpose since the Dirac operator loses Hermiticity at finite density or

in the Wilson fermion formalism. One might have noticed that the Banks-Casher relation

in the complex plane is a trivial relation; it is obvious from eq. (3.2) that −πρχ(0) returns

to
∑

i λ
−1
i immediately.

3.2 Diquark condensate

We can develop the same argument for the diquark condensate as well as the chiral con-

densate. We shall limit our discussions to the case with degenerate two-flavor (u and d)

quarks, and then we do not need to introduce the Nambu-Gor’kov basis. In the presence

of the same quark chemical potential µ for u and d quarks, we can write the Lagrangian

density down as [23]

L = ψ̄uD(µ)ψu + ψ̄dD(µ)ψd − Jψ̄u(Cγ5)σ2ψ̄
T
d + J̄ψT

d (Cγ5)σ2ψu , (3.5)

where J and J̄ are the source for the diquark and anti-diquark which are anti-symmetric

in spin, color, and flavor. By means of a variable change by

φ̄d ≡ ψT
d Cσ2 , φd ≡ Cσ2ψ̄

T
d , (3.6)

it is possible to compactify the above into

L = (ψ̄u, φ̄d)

(

D(µ) −Jγ5

J̄γ5 D(−µ)

)(

ψu

φd

)

. (3.7)

The integration over the quark fields is then straightforward and the resultant partition

function is given as the determinant as follows;

Z(J) =

〈

det

(

D(µ)γ5 −J

J̄ D(−µ)γ5

)〉

U

=
〈

det
[

D(µ)D†(µ) + |J |2
]〉

U
, (3.8)
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where we have used γ5D(−µ)γ5 = D†(µ). We note that D(µ)D†(µ) is always Hermitean

though D(µ) may not be so. We can then prove that the eigenvalue of D(µ)D†(µ) is non-

negative real, which we denote by ξ2i with choosing ξi ≥ 0. The diquark condensate thus

reads

〈

ψ̄u(Cγ5)σ2ψ̄
T
d

〉

=
∂

V ∂J
Z(J)

∣

∣

∣

J=0
=

1

V

〈〈

∑

i

J

ξ2i + |J |2

〉〉

= π
〈〈

ρD(0)
〉〉

, (3.9)

where we have defined the diquark spectral density,

ρD(ξ) =
1

V

∑

i

δ(ξ − ξi) , (3.10)

in a familiar form. It should be mentioned that we do not have to perform the analytic

continuation this time because ξi sits on the real axis.

3.3 Parity-Flavor breaking condensate

In the same way we can discuss the parity-flavor breaking condensate whose non-zero

expectation value characterizes the Aoki phase in the Wilson fermion formalism. For two-

flavor quarks the source term for the condensate 〈ψ̄iγ5τ3ψ〉 enters the Lagrangian as

L = ψ̄uD(µ)ψu + ψ̄dD(µ)ψd +H(ψ̄uiγ5ψu − ψ̄diγ5ψd) , (3.11)

from which the partition function reads

Z(H) =

〈

det

(

D(µ)γ5 + iH 0

0 D(µ)γ5 − iH

)〉

U

=
〈

det
[

D(µ)D†(−µ) +H2
]〉

U
. (3.12)

It is interesting to note that eq. (3.12) above is reduced to eq. (3.8) when µ = 0. As a result

the parity-flavor breaking condensate seems to be degenerate with the diquark condensate

in the absence of chemical potential. Once the finite density is switched on, D(µ)D†(−µ)

is no longer a Hermitean operator, and its eigenvalue distribution spreads over the complex

plane. Thus, if we define the spectral density by

ρH(η) ≡
1

πV

∑

i

1

ηi − η
(3.13)

with the complex eigenvalue η2
i of the operator D(µ)D†(−µ) with choosing Re(ηi) ≥ 0, we

can write the parity-flavor breaking condensate as

〈

ψ̄uiγ5ψu − ψ̄diγ5ψd

〉

= −iπ
〈〈

ρH(iH) − ρH(−iH)
〉〉

= 2πIm
〈〈

ρH(iH)
〉〉

. (3.14)

4. Eigenvalue distribution for a random configuration

In this work we will take only one random configuration as a representative instead of

calculating the ensemble average over many random configurations. Actually the eigenvalue

distribution for one typical gauge configuration turns out to be quite informative in our case.
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Figure 1: Eigenvalue distribution for a random gauge configuration in the staggered fermion

formalism at mq = 0 on the 64 lattice. The distribution at mq 6= 0 is given by a shift along the real

axis by mq.

This simplification is legitimate because each random configuration equally contributes to

a physical quantity in the strong coupling limit. So to speak, the strong coupling theory

is democratic and any configuration is eligible for a representative. If we are interested in

the weak coupling regime, we would have to take an appropriate ensemble average.

We will first proceed to the calculation in the staggered fermion formalism and make

sure that our results agree well with known results in the mean-field approximation at

strong coupling. After that we will adopt the Wilson fermion formalism and look further

into the possibility of the Aoki phase.

4.1 Staggered fermion

The Dirac operator at finite density in the staggered fermion formalism is

DS(µ) ≡ mq δm,n +
1

2

∑

i

ηi(m)
[

Ui(m) δm+ı̂,n − U †
i (n) δm,n+ı̂

]

+

+ η4(m)
[

eµ U4(m) δm+4̂,n − e−µ U †
4(n) δm,n+4̂

]

,

(4.1)

where ηµ(n) ≡ (−1)n1+n2+···+nµ−1 and the chemical potential is introduced as formulated

in ref. [50].

The zero-density Dirac operator in the staggered fermion formalism is anti-Hermitean

except for the mass term, so that all the eigenvalues reside on the vertical line whose

real part is mq (see the lower-left scatter plot in figure 1). The chemical potential breaks

Hermiticity and the eigenvalue distribution has a width along the real axis as µ goes larger
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Figure 2: Real part of the spectral density, Re(ρχ(λ)), in the complex plane for various values of

the chemical potential.

as shown in the scatter plots for µ = 0.3, 0.6, and 0.9 in figure 1. These figures are

reminiscent of the scatter plots in refs. [4, 11]. To draw figure 1 we have generated a

random gauge configuration on the lattice with a volume of V = 64. Because the staggered

fermion has only color indices, the total number of dots in figure 1 is 2 × 64 = 2592 for

each plot. We have made use of LAPACK to compute 2592 eigenvalues numerically.

The broadened width in the real direction has a definite physical meaning. In the

case of mq 6= 0 the distribution has to be shifted by mq and then the entire eigenvalue

distribution can be placed in the positive quadrant as long as µ is small as compared

to mq. It is hence a natural anticipation that the superfluidity has an onset when the

eigenvalue distribution becomes as wide as it reaches the origin. This is actually the case.

From the obtained eigenvalues we can explicitly calculate the spectral density (3.2) to

evaluate the chiral condensate through the Banks-Casher relation in eq. (3.3). Because of

the quartet pattern of the eigenvalue distribution the imaginary part of ρχ(λ) is vanishing

on the real axis. The chiral condensate inferred from eq. (3.3) is thus insensitive to the

imaginary part but determined solely by the real part of the spectral density taking a real

value. We show the real part of the spectral density (3.2) in figure 2 for various µ. It is

remarkable that the spectral density for a random configuration looks such smooth even

without taking an ensemble average.

As we have mentioned, the eigenvalues and thus the spectral density with a finite mq

can be deduced simply by a shift along the real axis by mq. Therefore, ρχ(0) appearing in

eq. (3.3) can be read from figure 2 by the value at (Reλ, Imλ) = (−mq, 0).

When µ = 0 a sharp perpendicular wall stands at Re(λ) = 0 which is responsible for

a non-vanishing chiral condensate in the limit of mq → 0 while keeping µ = 0. The wall is
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Figure 3: Left: histogram of nD(ξ) whose slope gives the spectral density ρD(ξ). Right: diquark

condensate as a function of µ at mq = 0.

smoothened by the effect of µ 6= 0 and it is no longer vertically upright at finite density,

which leads to an interesting observation. In fact, it is not hard to conceive from figure 2

that the chiral condensate becomes zero in the chiral limit at infinitesimal but nonzero µ.

This is absolutely consistent with ref. [2].

We shall next evaluate the diquark condensate using the Banks-Casher relation (3.9).

We will start with the chiral limit (mq = 0) and then go into the finite mass case that

we choose mq = 0.2 here in this work. For convenience we define the integrated diquark

spectral number,

nD(ξ) =

∫ ξ

0

dξ′ ρD(ξ′) , (4.2)

whose slope at ξ = 0 gives the spectral density ρD(ξ = 0) which is proportional to the di-

quark condensate. Although the staggered fermion Lagrangian does not involve the Dirac

spinor, it is not difficult to make use of the Nambu-Gor’kov representation to express the

diquark condensate by the diquark spectral density. Since the derivation is only straight-

forward, we will not reiterate it but skip detailed arithmetics. To summarize the resultant

relations, we can prove that

σ ≡
1

2
〈χ̄χ〉 =

π

2
ρ(0) , ∆ ≡

1

2
〈χiσ2χ〉 =

π

4
ρD(0) , (4.3)

where the extra 1/2 factor in the diquark relation comes from the square-root prescription

necessary to cancel the doubled Nambu-Gor’kov basis. In the above we have chosen the

same normalization as ref. [20].

It is intriguing to evaluate nD(ξ) by the explicit numerical calculation for the eigen-

values in figure 2 from which we can get ρD(ξ). Figure 3 shows our results in the chiral

limit. In this case only the diquark condensate is a non-vanishing quantity [2]. We plot

the diquark condensate in the right of figure 3 without indicating the error bar. We did

so because, though the fitting error is small, the systematic error is large. If we change

the working procedure to measure the slope from the histogram in the left of figure 3, the

resultant diquark condensate would change too. For clarity of our numerical procedure we

explain how we compute the slope of nD(ξ) at the origin. We assume a functional form

– 9 –
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Figure 4: Left: histogram of nD(ξ) in the case of mq = 0.2. Right: chiral and diquark condensates

as a function of µ at mq = 0.2.

nD(ξ) = aξ+ bξ2 within the range ξ ∈ [0, 0.1] and fix a and b to fit the data. Then, a gives

the slope at the origin. If a turns negative, that means no spectral density at the origin,

and so the diquark condensate should be zero. In this way we draw the right of figure 3

which shows outstanding agreement with the upper-left of figure 1 in ref. [20].

The mq dependence in D(µ)D†(µ) is not such trivial as in the case of D(µ). Roughly

speaking, a finitemq shifts the eigenvalue in the positive real direction so that the eigenvalue

distribution is blocked in the vicinity of the origin as long as µ is small. For µ above a

certain threshold value the diquark spectral density becomes finite at ξ = 0, and the diquark

condensation is activated. We can repeat the calculation in the massive case as well. As we

mentioned our choice is mq = 0.2, and we read the chiral and diquark condensate from the

chiral and diquark spectral density. Our final results are presented below in figure 4. We

note that the onset for the chiral condensate decrease is determined by the front edge of

the sidling wall which corresponds to the edge of the Dirac eigenvalue distribution, which

in turn corresponds to the diquark onset.

It is impressing that the results in the right of figure 4 is consistent qualitatively with

the mean-field analysis in the strong coupling limit given in the upper-left of figure 1 in

ref. [20], though the direct comparison is not possible for different mass choice.

4.2 Wilson fermion

We shall consider the Wilson fermion henceforth. The Dirac operator is defined as

DW (µ) ≡ δm,n − κ
∑

i

[

(r − γi)Ui(m) δm+ı̂,n + (r + γi)U
†
i (n) δm,n+ı̂

]

−

− κ
[

(r − γ4) eµ U4(m) δm+ı̂,n + (r + γ4) e−µ U †
4 (n) δm,n+ı̂

]

,

(4.4)

where κ is the hopping parameter and we choose r = 1 throughout this work. In this

case we adopt V = 44 and then there are (2 colors)×(4 spinors)×44 = 2048 eigenvalues.

Of course, we could treat V = 64 without difficulty, but there are then many eigenvalues

(almost five times more than the V = 44 case) and plotting looks too dense. Our small

lattice volume is limited not for technical reason but for presentation convenience.
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Figure 5: Eigenvalue distribution for a random gauge configuration in the Wilson fermion formal-

ism at µ = 0 on the 44 lattice for various combinations of κ and r.

It is instructive to see the free dispersion relations first. With the free background (i.e.

Uµ = 1 everywhere) it is easy to calculate the eigenvalue analytically in momentum space

to find

Re(λfree) = 1 − 2κr
(

cos p1 + cos p2 + cos p3 + cos p4

)

,

Im(λfree) = ±2κ
√

(sin p1)2 + (sin p2)2 + (sin p3)2 + (sin p4)2 .
(4.5)

Although this expression is valid only for the free background, it turns out to be quite useful

to understand the eigenvalue distribution in a qualitative level even at strong coupling as

we will see shortly.

Usually Re(λ) < 0 gives the condition that the Aoki phase appears. In the free case,

therefore, the Aoki phase has a window |κ| > 1/(8r), while the Aoki phase condition is

|κ| > 1/(4r) in the strong coupling limit. Now, as we mentioned in Introduction, it is

confusing that the diquark condensation has exactly the same criterion for the onset, as

demonstrated in figures 1 and 2. Then, a question arises; which of the diquark superfluid

phase and the Aoki phase is more favored? The rest of this paper will be devoted to

answering this question.

Let us see the parameter dependence of the eigenvalue distribution for a random con-

figuration in the zero density case, which is shown in figure 5. When we increase κ with

r fixed as shown in the lower two figures in figure 5, the distribution range is enlarged.

We can understand this qualitatively from eq. (4.5) in the free dispersion; both Re(λ) − 1

and Im(λ) are proportional to κ. The upper two plots in figure 5 show the r dependence

with κ fixed. In this case in turn the distribution stretches only along the real axis. This

feature is also manifest in eq. (4.5) since only Re(λ) − 1 is multiplied by r. As we can
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Figure 6: Eigenvalue distribution for the free Wilson fermion at κ = 0.23 on the 44 lattice for

µ = 0, 0.3, 0.6, and 0.9.

see, the distribution penetrates into the negative real region between (r = 1, κ = 0.2)

and (r = 1, κ = 0.3), which is consistent with the known fact that the critical coupling is

(r = 1, κ = 0.25) in the strong coupling limit. In what follows we will employ a value of

κ = 0.23 which is close to the critical point but still outside of the Aoki phase region, if

any.

Next, we will investigate how the chemical potential affects the eigenvalue distribution.

Let us consider the free case first again in which the fourth component is replaced as

p4 → p4 − iµ. Then, the real and imaginary parts in the free dispersion are, respectively,

modified by

cos(p4 − iµ) = coshµ cos p4 + i sinhµ sin p4 ,

[

sin(p4 − iµ)
]2

= (sin p4)
2 − (sinhµ)2 −

1

2
i sinh(2µ) sin(2p4) .

(4.6)

In this simple case it is interesting to see how the free known results are affected by the

effect of the finite chemical potential which we show in figure 6.

To draw figure 6 we have discretized the momenta p1, p2, p3, and p4 in the range [−π, π]

into twenty points with equal spacing. We did so in order to make the “density” perceivable

from figure 6; if the momentum is close to continuum with many points, the distribution

except for the µ = 0 case does not have the empty region strictly. The concentration

would be hard to see. It is quite interesting to observe a non-trivial structure emerging at

high µ unexpectedly. It is apparent that the density has a similar effect as the hopping

parameter κ; the eigenvalue profile becomes wider in the complex plane as either µ or κ

gets greater. The density modification is not such simple, however, and we presume that

the rich contents in dense quark matter are attributed in part to this structural difference.
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Figure 7: Eigenvalue distribution for a random gauge configuration in the Wilson fermion formal-

ism at κ = 0.23 on the 44 lattice for µ = 0, 0.3, 0.6, and 0.9.

At the same time, however, we have to keep in mind that this complicated structure at

large µ looks like coming from the non-trivial entanglement between different doubler sec-

tors. In the vicinity of the continuum limit at µ = 0 only the far left edge part corresponds

to the lightest physical excitation and four other points crossing the real axis are doublers

going to infinity. This clear separation is missing in view of the eigenvalue distribution of

figure 6 at µ = 0.6 or at µ = 0.9 for instance. This poses a serious question; even though

we could solve the sign problem somehow, it should be a subtle issue how to separate the

doublers out at density high enough to allow for excitations of unphysical doublers.

For a randomly generated gauge configuration the µ dependence of the eigenvalue

distribution reflects the above mentioned structure as displayed in figure 7. Needless to say,

we can follow the same path to evaluate the chiral condensate but the resulting condensate

is finite and almost constant independent of the density. This is because naive chiral

symmetry is explicitly broken in the Wilson fermion formalism, and so we will not present

the results. Let us now evaluate the diquark condensate in the same way as we did in the

staggered fermion formalism. It is calculable from the integrated spectral number nD(ξ)

for the operator D(µ)D†(µ). Our results are shown in figure 8.

In the case of the Wilson fermion there are four times degrees of freedom than the

staggered fermion and so the saturation effect is not yet relevant in the right of figure 8.

It should be mentioned that we measure the slope at the origin in the same way as in the

staggered fermion; we fit the data up to ξ = 0.1 by nD(ξ) = aξ + bξ2. If we change the

fitting range and the fitting functional form, we would have quantitatively different results.

The systematic error is not well under control. At least, however, we can state that such

simple calculations in this work could capture qualitative features of diquark superfluidity.

Finally let us discuss the possibility of the Aoki phase from the point of view of the

spectral density ρH(η) corresponding to the parity-flavor breaking condensate. That is
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Figure 8: Left: histogram of nD(ξ). Right: diquark condensate as a function of µ.
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Figure 9: Imaginary part of the spectral density, Im(ρH(η)) in the complex plane for various values

of the chemical potential.

understood from the 3D plot for the spectral density given in figure 9.

According to the Banks-Casher-type relation we obtained, the parity-flavor breaking

condensate is to be acquired from the height of Im(ρH(η)) at the origin. It should be the

finite-volume effect that the origin looks smooth and the symmetry breaking looks like

not occurring even at µ = 0. We anticipate that the standing wall would be more sharp

upright around the origin in the thermodynamic limit. Even in the thermodynamic limit,

however, the wall has a finite slope at µ 6= 0 which reminds us of the chiral condensate

discussed in figure 2. Thus, the same conclusion can be drawn; the parity-flavor breaking

condensate thus takes a non-zero value in the limit of H → 0 while keeping µ = 0 strictly.

In the presence of infinitesimal chemical potential, in contrast, the situation changes and

the condensate is vanishing in the limit of µ → 0 after taking the limit H = 0. Therefore,

in the exactly same sense as the chiral dynamics we should conclude that there is no
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parity-flavor breaking condensate in this system. As long as the two-color QCD with two

degenerate flavors is concerned, we do not have to care about the Aoki phase even in the

Wilson fermion formalism on the lattice.

5. Remarks

We saw the eigenvalue distribution of the Dirac operator at finite density D(µ) and its

relatives D(µ)D†(µ) and D(µ)D†(−µ) to discuss the fate of the chiral condensate, the

diquark condensate, and the parity-flavor breaking condensate.

We have a conjecture that a similar pattern in the eigenvalue distribution should appear

also in dense QCD with three colors; the eigenvalue distribution reaches the origin at the

onset for nuclear matter. At this stage we have no idea what kind of characteristic feature

is associated with the color superconducting phase. We believe, in principle, that we can

pursue our strategy in order to access color superconductivity. It has not been successful

so far to describe the color superconducting phase in the strong coupling limit [51]. Since

our method does not assume any mean-field nor truncation, our method should be useful

to clarify what is going on in the diquark channel in strong-coupling QCD. This is what

we are planning to do as a future extension.

The present work is focused on the numerical outputs. It is maybe an interesting

question how the change in the eigenvalue distribution could be interpreted in analogy

to known phenomena such as the chiral symmetry breaking interpreted as the Anderson

localization [52 – 54]. This research deserves further investigation. Also, it should be fea-

sible, in principle, to apply our idea to the weak-coupling regime close to the continuum

limit using the open gauge configurations if they are available. Since the physical units in

the color SU(2) world are obscure, unfortunately, the continuum limit is not quite lucid

then. Nevertheless, in view of the qualitative success of the strong coupling expansion to

understand hot and dense QCD [48], we may well anticipate that a smooth crossover links

the strong-coupling regime to the weak-coupling one. This could be checked by inclusion

of the finite β corrections.

Finally let us mention on the possible extension to the overlap fermion where exact

chiral symmetry can be defined on the lattice. Then, there is no need to consider the Aoki

phase from the beginning because the eigenvalue distribution sits on a single circle line

at µ = 0. This nice feature breaks down, however, at finite density. This is because the

γ5-hermiticity is lost at µ 6= 0 but it is amazing that chiral symmetry is still realized [38].

The overlap fermion surpasses the staggered and Wilson fermions; we would be able to

treat not four but two flavors and look into the behavior of the chiral condensate as well

as the diquark condensate in the overlap fermion formalism. This extension is also on our

list for future perspective.

Acknowledgments

The author thanks the colleagues of Yukawa Institute for Theoretical Physics and of De-

partment of Physics at the Kyoto University, especially Toru T. Takahashi and Hideaki Iida,

– 15 –



J
H
E
P
0
7
(
2
0
0
8
)
0
8
3

for useful conversations. He also thanks Atsushi Nakamura for discussions. This work is

in part supported by Yukawa International Program for Quark-Hadron Sciences.

References

[1] A. Nakamura, Quarks and gluons at finite temperature and density, Phys. Lett. B 149 (1984)

391.

[2] E. Dagotto, F. Karsch and A. Moreo, The strong coupling limit of SU(2) QCD at finite

Baryon density, Phys. Lett. B 169 (1986) 421.

[3] E. Dagotto, A. Moreo and U. Wolff, Lattice SU(N) QCD at finite temperature and density in

the strong coupling limit, Phys. Lett. B 186 (1987) 395.

[4] C. Baillie, K.C. Bowler, P.E. Gibbs, I.M. Barbour and M. Rafique, The chiral condensate in

SU(2) QCD at finite density, Phys. Lett. B 197 (1987) 195.

[5] J.U. Klatke and K.H. Mutter, Strong coupling QCD with SU(2) Gauge fields at finite Baryon

number density, Nucl. Phys. B 342 (1990) 764.

[6] R. Rapp, T. Schafer, E.V. Shuryak and M. Velkovsky, Diquark Bose condensates in high

density matter and instantons, Phys. Rev. Lett. 81 (1998) 53 [hep-ph/9711396].

[7] G.W. Carter and D. Diakonov, Light quarks in the instanton vacuum at finite baryon density,

Phys. Rev. D 60 (1999) 016004 [hep-ph/9812445].

[8] S. Hands, J.B. Kogut, M.-P. Lombardo and S.E. Morrison, Symmetries and spectrum of

SU(2) lattice gauge theory at finite chemical potential, Nucl. Phys. B 558 (1999) 327

[hep-lat/9902034].

[9] J.B. Kogut, M.A. Stephanov and D. Toublan, On two-color QCD with baryon chemical

potential, Phys. Lett. B 464 (1999) 183 [hep-ph/9906346].

[10] J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot and A. Zhitnitsky, QCD-like

theories at finite baryon density, Nucl. Phys. B 582 (2000) 477 [hep-ph/0001171].

[11] S. Hands et al., Numerical study of dense adjoint matter in two color QCD, Eur. Phys. J. C

17 (2000) 285 [hep-lat/0006018].

[12] K. Splittorff, D.T. Son and M.A. Stephanov, QCD-like theories at finite baryon and isospin

density, Phys. Rev. D 64 (2001) 016003 [hep-ph/0012274].

[13] J.B. Kogut, D. Toublan and D.K. Sinclair, Diquark condensation at nonzero chemical

potential and temperature, Phys. Lett. B 514 (2001) 77 [hep-lat/0104010].

[14] J.B. Kogut, D.K. Sinclair, S.J. Hands and S.E. Morrison, Two-colour QCD at non-zero

quark-number density, Phys. Rev. D 64 (2001) 094505 [hep-lat/0105026].

[15] J.B. Kogut, D. Toublan and D.K. Sinclair, The phase diagram of four flavor SU(2) lattice

gauge theory at nonzero chemical potential and temperature, Nucl. Phys. B 642 (2002) 181

[hep-lat/0205019].

[16] K. Splittorff, D. Toublan and J.J.M. Verbaarschot, Thermodynamics of chiral symmetry at

low densities, Nucl. Phys. B 639 (2002) 524 [hep-ph/0204076].

[17] J. Wirstam, J.T. Lenaghan and K. Splittorff, Melting the diquark condensate in two-color

QCD: a renormalization group analysis, Phys. Rev. D 67 (2003) 034021 [hep-ph/0210447].

– 16 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB149%2C391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB149%2C391
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB169%2C421
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB186%2C395
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB197%2C195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB342%2C764
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C81%2C53
http://arxiv.org/abs/hep-ph/9711396
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD60%2C016004
http://arxiv.org/abs/hep-ph/9812445
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB558%2C327
http://arxiv.org/abs/hep-lat/9902034
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB464%2C183
http://arxiv.org/abs/hep-ph/9906346
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB582%2C477
http://arxiv.org/abs/hep-ph/0001171
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC17%2C285
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC17%2C285
http://arxiv.org/abs/hep-lat/0006018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C016003
http://arxiv.org/abs/hep-ph/0012274
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB514%2C77
http://arxiv.org/abs/hep-lat/0104010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C094505
http://arxiv.org/abs/hep-lat/0105026
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB642%2C181
http://arxiv.org/abs/hep-lat/0205019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB639%2C524
http://arxiv.org/abs/hep-ph/0204076
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C034021
http://arxiv.org/abs/hep-ph/0210447


J
H
E
P
0
7
(
2
0
0
8
)
0
8
3

[18] S. Muroya, A. Nakamura and C. Nonaka, Behavior of hadrons at finite density: lattice study

of color SU(2) QCD, Phys. Lett. B 551 (2003) 305 [hep-lat/0211010].

[19] J.B. Kogut, D. Toublan and D.K. Sinclair, The pseudo-Goldstone spectrum of 2-colour QCD

at finite density, Phys. Rev. D 68 (2003) 054507 [hep-lat/0305003].

[20] Y. Nishida, K. Fukushima and T. Hatsuda, Thermodynamics of strong coupling 2-color QCD

with chiral and diquark condensates, Phys. Rept. 398 (2004) 281 [hep-ph/0306066].

[21] C. Ratti and W. Weise, Thermodynamics of two-colour QCD and the Nambu Jona- Lasinio

model, Phys. Rev. D 70 (2004) 054013 [hep-ph/0406159].

[22] B. Alles, M. D’Elia and M.P. Lombardo, Behaviour of the topological susceptibility in two

colour QCD across the finite density transition, Nucl. Phys. B 752 (2006) 124

[hep-lat/0602022].

[23] S. Hands, S. Kim and J.-I. Skullerud, Deconfinement in dense 2-color QCD, Eur. Phys. J. C

48 (2006) 193 [hep-lat/0604004].

[24] K. Fukushima and Y. Hidaka, A model study of the sign problem in the mean-field

approximation, Phys. Rev. D 75 (2007) 036002 [hep-ph/0610323].

[25] K. Fukushima and K. Iida, Larkin-Ovchinnikov-Fulde-Ferrell state in two-color quark matter,

Phys. Rev. D 76 (2007) 054004 [arXiv:0705.0792].

[26] M.A. Stephanov, Random matrix model of QCD at finite density and the nature of the

quenched limit, Phys. Rev. Lett. 76 (1996) 4472 [hep-lat/9604003].

[27] A.M. Halasz, J.C. Osborn and J.J.M. Verbaarschot, Random matrix triality at nonzero

chemical potential, Phys. Rev. D 56 (1997) 7059 [hep-lat/9704007].

[28] B. Vanderheyden and A.D. Jackson, Random matrix study of the phase structure of QCD

with two colors, Phys. Rev. D 64 (2001) 074016 [hep-ph/0102064].

[29] G. Akemann and T. Wettig, QCD Dirac operator at nonzero chemical potential: lattice data

and matrix model, Phys. Rev. Lett. 92 (2004) 102002 [Erratum ibid. 96 (2006) 029902]

[hep-lat/0308003].

[30] B. Klein, D. Toublan and J.J.M. Verbaarschot, Diquark and pion condensation in random

matrix models for two-color QCD, Phys. Rev. D 72 (2005) 015007 [hep-ph/0405180].

[31] G. Akemann and E. Bittner, Unquenched complex Dirac spectra at nonzero chemical

potential: two-colour QCD lattice data versus matrix model, Phys. Rev. Lett. 96 (2006)

222002 [hep-lat/0603004].

[32] K. Fukushima, Sign problem in two-color two-flavor QCD with quark and isospin chemical

potentials, PoS(LATTICE 2007)185.

[33] M.G. Alford, A. Schmitt, K. Rajagopal and T. Schafer, Color superconductivity in dense

quark matter, arXiv:0709.4635.

[34] A. Smilga and J.J.M. Verbaarschot, Spectral sum rules and finite volume partition function in

gauge theories with real and pseudoreal fermions, Phys. Rev. D 51 (1995) 829

[hep-th/9404031].

[35] M.E. Peskin, The alignment of the vacuum in theories of technicolor, Nucl. Phys. B 175

(1980) 197.

– 17 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB551%2C305
http://arxiv.org/abs/hep-lat/0211010
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C054507
http://arxiv.org/abs/hep-lat/0305003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C398%2C281
http://arxiv.org/abs/hep-ph/0306066
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C054013
http://arxiv.org/abs/hep-ph/0406159
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB752%2C124
http://arxiv.org/abs/hep-lat/0602022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC48%2C193
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC48%2C193
http://arxiv.org/abs/hep-lat/0604004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C036002
http://arxiv.org/abs/hep-ph/0610323
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C054004
http://arxiv.org/abs/0705.0792
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C76%2C4472
http://arxiv.org/abs/hep-lat/9604003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD56%2C7059
http://arxiv.org/abs/hep-lat/9704007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C074016
http://arxiv.org/abs/hep-ph/0102064
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C92%2C102002
http://arxiv.org/abs/hep-lat/0308003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C015007
http://arxiv.org/abs/hep-ph/0405180
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C96%2C222002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C96%2C222002
http://arxiv.org/abs/hep-lat/0603004
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2007)185
http://arxiv.org/abs/0709.4635
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD51%2C829
http://arxiv.org/abs/hep-th/9404031
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB175%2C197
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB175%2C197


J
H
E
P
0
7
(
2
0
0
8
)
0
8
3

[36] R. Setoodeh, C.T.H. Davies and I.M. Barbour, Wilson fermions on the lattice: a study of the

eigenvalue spectrum, Phys. Lett. B 213 (1988) 195.

[37] G. Akemann, Matrix models and QCD with chemical potential, Int. J. Mod. Phys. A 22

(2007) 1077 [hep-th/0701175].

[38] J. Bloch and T. Wettig, Overlap Dirac operator at nonzero chemical potential and random

matrix theory, Phys. Rev. Lett. 97 (2006) 012003 [hep-lat/0604020].

[39] T. Banks and A. Casher, Chiral symmetry breaking in confining theories, Nucl. Phys. B 169

(1980) 103.

[40] S. Aoki, New phase structure for lattice QCD with Wilson fermions, Phys. Rev. D 30 (1984)

2653.

[41] S. Aoki, U(1) problem and lattice QCD, Nucl. Phys. B 314 (1989) 79.

[42] N. Kawamoto and J. Smit, Effective lagrangian and dynamical symmetry breaking in strongly

coupled lattice QCD, Nucl. Phys. B 192 (1981) 100.

[43] J. Hoek, N. Kawamoto and J. Smit, Baryons in the effective lagrangian of strongly coupled

lattice QCD, Nucl. Phys. B 199 (1982) 495.

[44] H. Kluberg-Stern, A. Morel and B. Petersson, Spectrum of lattice gauge theories with

fermions from a 1/D expansion at strong coupling, Nucl. Phys. B 215 (1983) 527.

[45] H. Kluberg-Stern, A. Morel, O. Napoly and B. Petersson, Flavors of lagrangian Susskind

fermions, Nucl. Phys. B 220 (1983) 447.

[46] K. Fukushima, Effects of chiral restoration on the behaviour of the Polyakov loop at strong

coupling, Phys. Lett. B 553 (2003) 38 [hep-ph/0209311].

[47] K. Fukushima, Relation between the Polyakov loop and the chiral order parameter at strong

coupling, Phys. Rev. D 68 (2003) 045004 [hep-ph/0303225].

[48] K. Fukushima, Toward understanding the lattice QCD results from the strong coupling

analysis, Prog. Theor. Phys. Suppl. 153 (2004) 204 [hep-ph/0312057].

[49] N. Kawamoto, K. Miura, A. Ohnishi and T. Ohnuma, Phase diagram at finite temperature

and quark density in the strong coupling limit of lattice QCD for color SU(3), Phys. Rev. D

75 (2007) 014502 [hep-lat/0512023].

[50] P. Hasenfratz and F. Karsch, Chemical potential on the lattice, Phys. Lett. B 125 (1983) 308.

[51] V. Azcoiti, G. Di Carlo, A. Galante and V. Laliena, Diquark condensation at strong coupling,

JHEP 09 (2003) 014 [hep-lat/0307019].

[52] A.M. Garcia-Garcia and J.C. Osborn, Chiral phase transition in lattice QCD as a

metal-insulator transition, Phys. Rev. D 75 (2007) 034503 [hep-lat/0611019].

[53] T.T. Takahashi, Low-lying Dirac eigenmodes and monopoles in 4D compact QED, JHEP 11

(2007) 047 [hep-lat/0703023].

[54] T.T. Takahashi, Low-lying Dirac eigenmodes and monopoles in 3+ 1D compact QED, JHEP

05 (2008) 094 [arXiv:0803.2216].

– 18 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB213%2C195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA22%2C1077
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA22%2C1077
http://arxiv.org/abs/hep-th/0701175
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C97%2C012003
http://arxiv.org/abs/hep-lat/0604020
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB169%2C103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB169%2C103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD30%2C2653
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD30%2C2653
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB314%2C79
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB192%2C100
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB199%2C495
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB215%2C527
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB220%2C447
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB553%2C38
http://arxiv.org/abs/hep-ph/0209311
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C045004
http://arxiv.org/abs/hep-ph/0303225
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPSA%2C153%2C204
http://arxiv.org/abs/hep-ph/0312057
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C014502
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C014502
http://arxiv.org/abs/hep-lat/0512023
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB125%2C308
http://jhep.sissa.it/stdsearch?paper=09%282003%29014
http://arxiv.org/abs/hep-lat/0307019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C034503
http://arxiv.org/abs/hep-lat/0611019
http://jhep.sissa.it/stdsearch?paper=11%282007%29047
http://jhep.sissa.it/stdsearch?paper=11%282007%29047
http://arxiv.org/abs/hep-lat/0703023
http://jhep.sissa.it/stdsearch?paper=05%282008%29094
http://jhep.sissa.it/stdsearch?paper=05%282008%29094
http://arxiv.org/abs/0803.2216

